Avoiding unseen obstacles: Subcortical vision is not sufficient to maintain normal obstacle avoidance behaviour during reaching.
نویسندگان
چکیده
Previous research found that a patient with cortical blindness (homonymous hemianopia) was able to successfully avoid an obstacle placed in his blind field, despite reporting no conscious awareness of it [Striemer, C. L., Chapman, C. S., & Goodale, M. A., 2009, PNAS, 106(37), 15996-16001]. This finding led to the suggestion that dorsal stream areas, that are assumed to mediate obstacle avoidance behaviour, may obtain their visual input primarily from subcortical pathways. Hence, it was suggested that normal obstacle avoidance behaviour can proceed without input from the primary visual cortex. Here we tried to replicate this finding in a group of patients (N = 6) that suffered from highly circumscribed lesions in the occipital lobe (including V1) that spared the subcortical structures that have been associated with action-blindsight. We also tested if obstacle avoidance behaviour differs depending on whether obstacles are placed only in the blind field or in both the blind and intact visual field of the patients simultaneously. As expected, all patients successfully avoided obstacles placed in their intact visual field. However, none of them showed reliable avoidance behaviour - as indicated by adjustments in the hand trajectory in response to obstacle position - for obstacles placed in their blind visual field. The effects were not dependent on whether one or two obstacles were present. These findings suggest that behaviour in complex visuomotor tasks relies on visual input from occipital areas.
منابع مشابه
Visual navigation of a mobile robot with laser-based collision avoidance
In this paper, we propose and validate a framework for visual navigation with collision avoidance for a wheeled mobile robot. Visual navigation consists of following a path, represented as an ordered set of key images, which have been acquired by an on-board camera in a teaching phase. While following such path, the robot is able to avoid obstacles which were not present during teaching, and wh...
متن کاملTowards Monocular Vision based Obstacle Avoidance through Deep Reinforcement Learning
Obstacle avoidance is a fundamental requirement for autonomous robots which operate in, and interact with, the real world. When perception is limited to monocular vision avoiding collision becomes significantly more challenging due to the lack of 3D information. Conventional path planners for obstacle avoidance require tuning a number of parameters and do not have the ability to directly benefi...
متن کامل"Real-time" obstacle avoidance in the absence of primary visual cortex.
When we reach toward objects, we easily avoid potential obstacles located in the workspace. Previous studies suggest that obstacle avoidance relies on mechanisms in the dorsal visual stream in the posterior parietal cortex. One fundamental question that remains unanswered is where the visual inputs to these dorsal-stream mechanisms are coming from. Here, we provide compelling evidence that thes...
متن کاملVisual sonar: fast obstacle avoidance using monocular vision
We contribute a fast system for avoiding unknown obstacles on a mobile robot using a simple camera as the only sensor. The vision module detects objects, both known and unknown, around the robot. Unknown objects are detected by paying attention to occlusions of a floor of known colors. Range and angle to the objects is calculated and used to create a radial model of the robot’s vicinity. This m...
متن کاملBio-Inspired Planning and Reaching in Complex Environments
One of the hallmarks of human reaching behavior is the ability to think and generate plans for movements in complex environments. In this paper we model planning to reach for targets in space using a self-organized process of mental rehearsals of movements, and simulate the process using a redundant robot arm that is capable of learning to reach for targets in space while avoiding obstacles. Th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cortex; a journal devoted to the study of the nervous system and behavior
دوره 98 شماره
صفحات -
تاریخ انتشار 2018